Abstract

An implicit fundamental assumption in relativistic perturbation theory is that there exists a parametric family of spacetimes that can be Taylor expanded around a background. The choice of the latter is crucial to obtain a manageable theory, so that it is sometime convenient to construct a perturbative formalism based on two (or more) parameters. The study of perturbations of rotating stars is a good example: in this case one can treat the stationary axisymmetric star using a slow rotation approximation (expansion in the angular velocity Ω), so that the background is spherical. Generic perturbations of the rotating star (say parametrized by λ) are then built on top of the axisymmetric perturbations in Ω. Clearly, any interesting physics requires nonlinear perturbations, as at least terms λΩ need to be considered. In this paper, we analyse the gauge dependence of nonlinear perturbations depending on two parameters, derive explicit higher-order gauge transformation rules and define gauge invariance. The formalism is completely general and can be used in different applications of general relativity or any other spacetime theory.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.