Abstract
The present study addresses the use of CTOD and T-stress in fracture assessments of surface cracked shell structures. A new software is developed for this purpose, denoted LINK pipe. It is based on a combination of a quadrilateral assumed natural deviatoric strain thin shell finite element and an improved linespring finite element. Plasticity is accounted for using stress resultants. A power law hardening model is used for shell and linespring materials. A co-rotational formulation is employed to represent nonlinear geometry effects. With this, one can carry out nonlinear fracture mechanics assessments in structures that show instabilities due buckling (local/global), ovalisation and large rigid body motion. Many constraint-measuring parameters have been proposed, with the Q-parameter or the T-stress being the most popular ones. Solid finite element meshing for complex structures such as pipes containing semi-elliptical surface cracks in order to compute Q is at present not a feasible approach. However, shell structures are most conveniently meshed with shell finite elements, and the linespring finite element is a natural way of accounting for surface cracks. The T-stress is readily obtained from the linespring membrane force and bending moment along the surface crack. In this study we present a new approach to analyse cracked shell structures subjected to large geometric changes. By numerical examples it is shown how geometric instabilities and fracture compete as governing failure mode.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.