Abstract

We take into consideration two different kinds of two-parameter bifurcations in a class of 3D linear Filippov systems, namely pseudo-Bautin bifurcation and boundary equilibrium bifurcations for two scenarios. The bifurcation conditions for generating rich dynamic behaviors are established. The main objective is to investigate the effects of two parameters interacting simultaneously on a variety of dynamic phenomena. In order to analyze the pseudo-Bautin bifurcation, we build the Poincaré map and analyze the number of fixed points whose types are related to the crossing limit cycles. In order to analyze boundary equilibrium bifurcations for two scenarios, we perform an analysis on the existence and admissibility of equilibria. Besides, a comprehensive investigation on hidden attractors induced by boundary equilibrium bifurcations is conducted. The novelty resides in overcoming the constraints of previous studies that solely take into account the dynamics of individual parameter variations. We innovatively characterize the two-parameter bifurcation mechanism of a new class of Filippov systems, and qualitatively demonstrate the coexistence of hidden attractor and stable pseudo-equilibrium.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.