Abstract
This paper presents functional identities fulfilled by the forms of the dual sequence of polynomial eigenfunctions of certain differential operators, belonging to the class of the two-orthogonal polynomial sequences. For a specific third-order lowering operator, the correspondent matrix differential identity is deduced, proving that the resultant polynomial sequence is a classical polynomial sequence in the Hahn’s sense. As an example, the vectorial relation fulfilled by the tuple of functionals (u 0, u 1) of a two-orthogonal polynomial sequences analogous to the classical Laguerre polynomials is given, treated in a work of Ben Cheikh and Douak.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.