Abstract
BackgroundWe investigated pathogenic DYRK1B variants causative of abdominal obesity-metabolic syndrome 3 (AOMS3) in a group of patients originally diagnosed with type 2 diabetes. All DYRK1B exons were analyzed in a sample of 509 unrelated adults with type 2 diabetes and 459 controls, all belonging to the DMS1 SIGMA-cohort (ExAC). We performed in silico analysis on missense variants using Variant Effect Predictor software. To evaluate co-segregation, predicted pathogenic variants were genotyped in other family members. We performed molecular dynamics analysis for the co-segregating variants.ResultsAfter filtering, Mendelian genotypes were confirmed in two probands bearing two novel variants, p.Arg252His and p.Lys68Gln. Both variants co-segregated with the AOMS3 phenotype in classic dominant autosomal inheritance with full penetrance. In silico analysis revealed impairment of the DYRK1B protein function by both variants. For the first time, we describe age-dependent variable expressivity of this entity, with central obesity and insulin resistance apparent in childhood; morbid obesity, severe hypertriglyceridemia, and labile type 2 diabetes appearing before 40 years of age; and hypertension emerging in the fifth decade of life. We also report the two youngest individuals suffering from AOMS3.ConclusionsMonogenic forms of metabolic diseases could be misdiagnosed and should be suspected in families with several affected members and early-onset metabolic phenotypes that are difficult to control. Early diagnostic strategies and medical interventions, even before symptoms or complications appear, could be useful.
Highlights
We investigated pathogenic DYRK1B variants causative of abdominal obesity-metabolic syndrome 3 (AOMS3) in a group of patients originally diagnosed with type 2 diabetes
We searched for DYRK1B variants in the exome sequencing data derived from 968 unrelated individuals (509 with type 2 diabetes) belonging to the DMS1 SIGMA-cohort (ExAC) [4], focusing on variants classified by Variant Effect Predictor (VEP) as deleterious and damaging to confirm their co-segregation with AOMS3
Identification and co‐segregation of pathogenic variants in the DYRK1B gene Of the 968 unrelated individuals, 52.6% (n = 509) had type 2 diabetes according to the American Diabetes Association criteria [5]
Summary
We investigated pathogenic DYRK1B variants causative of abdominal obesity-metabolic syndrome 3 (AOMS3) in a group of patients originally diagnosed with type 2 diabetes. All DYRK1B exons were analyzed in a sample of 509 unrelated adults with type 2 diabetes and 459 controls, all belonging to the DMS1 SIGMA-cohort (ExAC). We searched for DYRK1B variants in the exome sequencing data derived from 968 unrelated individuals (509 with type 2 diabetes) belonging to the DMS1 SIGMA-cohort (ExAC) [4], focusing on variants classified by Variant Effect Predictor (VEP) as deleterious and damaging to confirm their co-segregation with AOMS3. We describe two novel DYRK1B mutations as causative of AOMS3 in two families previously misdiagnosed with type 2 diabetes
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.