Abstract

By means of density functional theory calculations, we successfully predict two stable 2D triangular borophenes, namely B3H and B6O. Our results indicate that B3H is a Dirac material and its cone point is located at the K point of the Brillouin zone (BZ). B6O is identified as having a node-line ring and Dirac cones together. Its node-line ring formed by the intersection of the extended energy band from the two Dirac cones located on K point. This modified 2D borophene has great thermal and dynamic stability due to the electron transfer from the triangular boron lattice to the O atoms. The electronic structure of B6O nanofilm demonstrates novel properties such as two Dirac cones, more than 1.3 eV linear dispersion bands at some points of the BZ, as well as excellent transport properties for the extremely high mobility brought by the combination of the node-line semimetal and Dirac cones. Our study may motivate potential applications of 2D materials in nanoelectronics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.