Abstract

Two synchronized bus-clamping pulse width modulation (PWM) strategies based on the space vector approach are proposed for high-power induction motor drives. The two strategies together can produce PWM waveforms with any odd pulse number, preserving the waveform symmetries. The proposed strategies operate upto the six-step mode, maintaining the proportionality between the reference magnitude and the fundamental voltage generated throughout. These two strategies lead to lesser harmonic distortion as well as lesser peak current over the conventional space vector strategy (CSVS) in the high speed ranges of constant V/F drives. The reduction in the harmonic distortion over CSVS subject to a given maximum switching frequency (F/sub SW(MAX)/) of the inverter is demonstrated theoretically as well as experimentally for F/sub SW(MAX)/=750 Hz and 450 Hz, both with and without overmodulation. The best reduction in the distortion is as high as 30% to 50% in the different cases considered. Further, these two PWM strategies are also useful in reducing the switching frequency of the inverter over sine-triangle PWM and CSVS subject to an upper limit on the harmonic distortion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.