Abstract

Phages are found in a wide variety of places where bacteria exist including body fluids. The aim of the present study was to isolate phages from the urine samples of patients with urinary tract infection. The 10 urine samples were cultured to isolate bacteria and also used as phage sources against the isolated bacteria. From 10 urine samples with positive cultures, 3 phages were isolated (33%) and two of them were further studied. The Klebsiella phage GADU21 and Escherichia phage GADU22 phages infected Klebsiella pneumonia and Escherichia coli, respectively. Among the tested 14 species for host range analysis, the Klebsiella phage GADU21 was able to infect two species which are Klebsiella pneumonia and Proteus mirabilis, and Escherichia phage GADU22 was able to infect four species which are Shigella flexneri, Shigella sonnei and Escherichia coli. Among different isolates of the indicator bacteria for each phage, GADU21 infected half of the tested 20 Klebsiella pneumonia isolates while GADU22 infected 85% of the tested 20 E. coli isolates. The genome sizes and GC ratios were 75,968bp and 44.4%, and 168,023bp and 35.3% for GADU21 and GADU22, respectively. GADU21 and GADU22 were both lytic and had no antibiotic resistance and virulence genes. GADU21 was homologue with Klebsiella phage vB_KpP_FBKp27 but only 88% of the genome was covered by this phage. The non-covered parts of the GADU21 genome included genes for tail-fiber-proteins and HNH-endonuclease. GADU22 had 94.8% homology with Escherichia phage vB_Eco_OMNI12 and had genes for immunity proteins. Phylogenetic analysis showed GADU21 and GADU22 were members of Schitoviridae family and Efbeekayvirus genus and Straboviridae family and Tevenvirinae genus, respectively. VIRIDIC analysis classified these phages in new species clusters. Our study demonstrated the possibility to use infected body fluids as phage sources to isolate novel phages. GADU21 is the first reported Klebsiella phage isolated from human body fluid. The absence of virulence and antibiotic resistance genes in their genomes makes the phages a potential therapeutic tool against infections.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call