Abstract

Two novel oligosaccharides, tetra-and penta-saccharides were synthesized by fructosyl transfer from 1-kestose to 4G-beta-D-galactopyranosylsucrose with a purified 1F-fructosyltransferase of asparagus roots and identified as 1F-beta-D-fructofuranosyl-4G-beta-D-galactopyranosylsucrose, O-beta-D-fructofuranosyl-(2-->1)-beta-D-fructofuranosyl-O-[beta-D-galactopyranosyl-(1-->4)]-alpha-D-glucopyranoside and 1F(1-beta-D-fructofuranosyl)2-4G-beta-D-galactopyranosylsucrose, [O-beta-D-fructofuranosyl-(2-->1)]2-beta-D-fructofuranosyl-O-[beta-D-galactopyranosyl-(1-->4)]-alpha-D-glucopyranoside, respectively. Both oligosaccharides were scarcely hydrolyzed by carbohydrase from rat small intestine. Human intestinal bacterial growth by 1F-beta-D-fructofuranosyl-4G-beta-D-galactopyranosylsucrose was compared with that by the tetrasaccharides, stachyose and nystose. Bifidobacteria utilized 1F-beta-D-fructofuranosyl-4G-beta-D-galactopyranosylsucrose to the same extent as stachyose or nystose. On the other hand, the unfavorable bacteria, Clostridium perfringens, Escherichia coli and Enterococcusfaecalis, that produce mutagenic substances did not use the synthetic oligosaccharide.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.