Abstract

Tardigrades are able to tolerate almost complete dehydration by reversibly switching to an ametabolic state. This ability is called anhydrobiosis. In the anhydrobiotic state, tardigrades can withstand various extreme environments including space, but their molecular basis remains largely unknown. Late embryogenesis abundant (LEA) proteins are heat-soluble proteins and can prevent protein-aggregation in dehydrated conditions in other anhydrobiotic organisms, but their relevance to tardigrade anhydrobiosis is not clarified. In this study, we focused on the heat-soluble property characteristic of LEA proteins and conducted heat-soluble proteomics using an anhydrobiotic tardigrade. Our heat-soluble proteomics identified five abundant heat-soluble proteins. All of them showed no sequence similarity with LEA proteins and formed two novel protein families with distinct subcellular localizations. We named them Cytoplasmic Abundant Heat Soluble (CAHS) and Secretory Abundant Heat Soluble (SAHS) protein families, according to their localization. Both protein families were conserved among tardigrades, but not found in other phyla. Although CAHS protein was intrinsically unstructured and SAHS protein was rich in β-structure in the hydrated condition, proteins in both families changed their conformation to an α-helical structure in water-deficient conditions as LEA proteins do. Two conserved repeats of 19-mer motifs in CAHS proteins were capable to form amphiphilic stripes in α-helices, suggesting their roles as molecular shield in water-deficient condition, though charge distribution pattern in α-helices were different between CAHS and LEA proteins. Tardigrades might have evolved novel protein families with a heat-soluble property and this study revealed a novel repertoire of major heat-soluble proteins in these anhydrobiotic animals.

Highlights

  • Water is essential for life and most animals cannot survive without water

  • Novel abundant heat-soluble proteins in tardigrades Because Late embryogenesis abundant (LEA) proteins maintain their solubility after heat treatment and are believed to have an important role in anhydrobiosis, we searched for major heat-soluble proteins from an anhydrobiotic tardigrade, R. varieornatus

  • Three other heat-soluble proteins identified from bands B2 and B3 shared several conserved sequences and formed another protein family without secretory signals (Fig. 2B). These proteins showed no similarity with known sequences in BLASTP search and no known motifs were found in Pfam database, suggesting that they formed a novel protein family

Read more

Summary

Introduction

Some organisms, including tardigrades, are able to tolerate an almost complete loss of water by entering a metabolically inactive state, referred to as anhydrobioisis, and they can resume their activity upon rehydration [1], [2]. Dehydrated tardigrades showed extraordinary tolerance against various physical extremes including exposure to space [3,4,5,6], but the molecular basis of these tolerant abilities is totally unknown. The anhydrobiotic ability was observed in several species belonging to four animal phyla; arthropods, nematodes, rotifers and tardigrades. In anhydrobiotic arthropods and nematodes, trehalose has long been suggested to have an important role in desiccation tolerance because it accumulates in large amounts (,15%–20% of body weight) upon desiccation [7,8,9]. Accumulation of trehalose was much less in tardigrades, varying from 0% to at most

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.