Abstract

Abstract Given a weighted undirected graph G with a set of pairs of terminals { s i , t i } , i = 1 , … , d , and an integer L ⩾ 2 , the two node-disjoint hop-constrained survivable network design problem (TNHNDP) is to find a minimum weight subgraph of G such that between every s i and t i there exist at least two node-disjoint paths of length at most L. This problem has applications to the design of survivable telecommunications networks with QoS-constraints. We discuss this problem from a polyhedral point of view. We present several classes of valid inequalities along with necessary and/or sufficient conditions for these inequalities to be facet defining. We also discuss separation routines for these classes of inequalities. Using this, we propose a Branch-and-Cut algorithm for the problem when L = 3 , and present some computational results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.