Abstract

AbstractIn this paper, we apply Stein's method for distributional approximations to prove a quantitative form of the Erdös–Kac Theorem. We obtain our best bound on the rate of convergence, on the order of log log log n (log log n)−1/2, by making an intermediate Poisson approximation; we believe that this approach is simpler and more probabilistic than others, and we also obtain an explicit numerical value for the constant implicit in the bound. Different ways of applying Stein's method to prove the Erdös–Kac Theorem are discussed, including a Normal approximation argument via exchangeable pairs, where the suitability of a Poisson approximation naturally suggests itself.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.