Abstract
Aspect-based sentiment analysis has been studied in both research and industrial communities over recent years. For the low-resource languages, the standard benchmark corpora play an important role in the development of methods. In this article, we introduce two benchmark corpora with the largest sizes at sentence-level for two tasks: Aspect Category Detection and Aspect Polarity Classification in Vietnamese. Our corpora are annotated with high inter-annotator agreements for the restaurant and hotel domains. The release of our corpora would push forward the low-resource language processing community. In addition, we deploy and compare the effectiveness of supervised learning methods with a single and multi-task approach based on deep learning architectures. Experimental results on our corpora show that the multi-task approach based on BERT architecture outperforms the neural network architectures and the single approach. Our corpora and source code are published on this footnoted site. 1
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: ACM Transactions on Asian and Low-Resource Language Information Processing
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.