Abstract

We propose two families of asymptotically local minimax lower bounds on parameter estimation performance. The first family of bounds applies to any convex, symmetric loss function that depends solely on the difference between the estimate and the true underlying parameter value (i.e., the estimation error), whereas the second is more specifically oriented to the moments of the estimation error. The proposed bounds are relatively easy to calculate numerically (in the sense that their optimization is over relatively few auxiliary parameters), yet they turn out to be tighter (sometimes significantly so) than previously reported bounds that are associated with similar calculation efforts, across many application examples. In addition to their relative simplicity, they also have the following advantages: (i) Essentially no regularity conditions are required regarding the parametric family of distributions. (ii) The bounds are local (in a sense to be specified). (iii) The bounds provide the correct order of decay as functions of the number of observations, at least in all the examples examined. (iv) At least the first family of bounds extends straightforwardly to vector parameters.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.