Abstract

In this paper, we propose a new customized proximal point algorithm for linearly constrained convex optimization problem, and further extend the proposed method to separable convex optimization problem. Unlike the existing customized proximal point algorithms, the proposed algorithms do not involve relaxation step, but still ensure the convergence. We obtain the particular iteration schemes and the unified variational inequality perspective. The global convergence and $${\mathcal {O}}(1/k)$$-convergence rate of the proposed methods are investigated under some mild assumptions. Numerical experiments show that compared to some state-of-the-art methods, the proposed methods are effective.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.