Abstract

In clinical trials, examining the adjusted treatment difference has become the preferred way to establish non-inferiority (NI) in cases involving a binary endpoint. However, current methods are inadequate in the area of covariate adjustment. In this paper, we introduce two new methods, nonparametric and parametric, of using the probability and probability (P-P) curve to address the issue of unadjusted categorical covariates in the traditional assessment of NI in clinical trials. We also show that the area under the P-P curve is a valid alternative for assessing NI using the adjusted treatment difference, and we compute this area using Mann–Whitney nonparametric statistics. Our simulation studies demonstrate that our proposed methods can not only control type I error at a predefined significance level but also achieve higher statistical power than those of traditional parametric and nonparametric methods that overlook covariate adjustment, especially when covariates are unbalanced in the two treatment groups. We illustrate the effectiveness of our methodology with data from clinical trials of a therapy for coronary heart disease.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.