Abstract

A fully antisymmetrized microscopic model is developed for light two-neutron halo nuclei using a hyper-spherical basis to describe halo regions. The many-body wavefunction is optimized variationally. The model is applied to 6He bound by semi realistic Minnesota nucleon–nucleon forces. The two-neutron separation energy and the radius of the halo are reproduced in agreement with experiment. Antisymmetrization effects between 4He and halo neutrons are found to be crucial for binding of 6He. We also properly extract two-neutron overlap functions and find that there is a significant increase of 30%–70% in their normalization due to microscopic effects as compared to the results of three-body models.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.