Abstract
Canine cardiac myocytes contain two distinct molecular forms of the Na,K-ATPase catalytic subunit. They are resolved by gel electrophoresis and identified using immunological techniques. The apparent molecular weights of the catalytic subunits are 95,000 (alpha) and 98,000 (alpha +). As judged by [3H]ouabain-binding measurements and Na,K-ATPase assays, the two forms are active and differ by a factor of 150 in their respective affinity for digitalis (ouabain and digitoxigenin). The dissociation constant of the high affinity form (alpha +) is KD, 2 nM, and that of the low affinity molecular form (alpha) is KD, 300 nM. According to both enzymatic and binding assays, up to 70% of maximum inhibition is caused by occupation of the high affinity sites (alpha +). Inasmuch as the pharmacological and toxic concentrations of digitalis in dog are 1 and 200 nM, respectively, and as maximum inhibition of Na+ pump in vivo should not exceed 80% to avoid toxicity (Akera, T. and Brody, T. (1982) Annu. Rev. Physiol. 44, 375-388), it appears that the high affinity molecular form (alpha +) is the pharmacological receptor exclusively related to positive inotropy, whereas the low affinity form (alpha) is mainly associated with toxicity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.