Abstract

ABSTRACT Online change point detection methods monitor changes in the distribution of a data stream. This article discusses two non-parametric online change detection methods based on the energy statistics and Mahalanobis depth. To apply the energy statistic, we use sliding-window algorithm with efficient training and updating procedures. For Mahalanobis depth, we propose an algorithm to train the threshold with desired protective ability against false alarms and discuss factors that have an influence on the threshold. Numerical studies evaluate and compare the performance of the proposed models with three existing methods to detect changes in the mean and variability of a data stream. The methods are applied to detecting changes in the flowing volume of the Mississippi River.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.