Abstract

Nosocomial infections caused by Acinetobacter spp. resistant to carbapenems are increasingly reported worldwide. Carbapenem-resistant Acinetobacter (CRA) is becoming a serious concern with increasing patient morbidity, mortality, and lengths of hospital stay. Therefore, the rapid detection of CRA is essential for epidemiological surveillance. Polymerase chain reaction (PCR) has been extensively used for the rapid identification of most pathogens. In this study, we have developed two multiplex real-time PCR assays to detect and differentiate A. baumannii and non-A. baumannii Acinetobacter spp, and common carbapenemase genes, including blaNDM, blaOXA-23-like, blaOXA-40-like, blaOXA-51-like, and blaOXA-58-like. We demonstrate the potential utility of these assays for the direct detection of blaNDM-, blaOXA-23-like-, blaOXA-40-like-, blaOXA-51-like-, and blaOXA-58-like-positive CRA in clinical specimens. Primers were specifically designed, and two multiplex real-time PCR assays were developed: multiplex real-time PCR assay1 for the detection of Acinetobacter baumannii 16S–23S rRNA internal transcribed spacer sequence, the Acinetobacter recA gene, and class-B-metalloenzyme-encoding gene blaNDM; and multiplex real-time PCR assay2 to detect class-D-oxacillinase-encoding genes (blaOXA-23-like, blaOXA-40-like, blaOXA-51-like,and blaOXA-58-like). The assays were performed on an ABI Prism 7500 FAST Real-Time PCR System. CRA isolates were used to compare the assays with conventional PCR and sequencing. Known amounts of CRA cells were added to sputum and fecal specimens and used to test the multiplex real-time PCR assays. The results for target and nontarget amplification showed that the multiplex real-time PCR assays were specific, the limit of detection for each target was 10 copies per 20 μL reaction volume, the assays were linear over six log dilutions of the target genes (r2 > 0.99), and the Ct values of the coefficients of variation for intra- and interassay reproducibility were less than 5%. The multiplex real-time PCR assays showed 100% concordance with conventional PCR when tested against 400 CRA isolates and their sensitivity for the target DNA in sputum and fecal specimens was 102 CFU/mL. Therefore, these novel multiplex real-time PCR assays allow the sensitive and specific characterization and differentiation of blaNDM-, blaOXA-23-like-, blaOXA-40-like-, blaOXA-51-like-, and blaOXA-58-like-positive CRA, making them potential tools for the direct detection of CRA in clinical specimens and the surveillance of nosocomial infections.

Highlights

  • The genus Acinetobacter comprises strictly aerobic, Gram-negative, non-fermenting coccobacilli, which have become some of the most prominent human pathogens, causing a wide range of nosocomial infections [1]

  • The aim of this study was to establish and evaluate two multiplex real-time Polymerase chain reaction (PCR) assays that incorporate the primers for seven target genes, followed by a melting-curve analysis of the amplicons, to simultaneously detect and differentiate the A. baumannii 16S–23S rRNA internal transcribed spacer (ITS), the Acinetobacter recA gene, and the class-B-metalloenzyme-encoding gene blaNDM with multiplex real-time PCR assay 1, and the class-D-oxacillinase-encoding genes(blaOXA-23-like, blaOXA-40-like, blaOXA-51-like,and blaOXA-58-like) in multiplex real-time PCR assay 2

  • The results of susceptibility testing were interpreted according to the Clinical and Laboratory Standards Institute (CLSI) guidelines (CLSI-M100-S23)

Read more

Summary

Introduction

The genus Acinetobacter comprises strictly aerobic, Gram-negative, non-fermenting coccobacilli, which have become some of the most prominent human pathogens, causing a wide range of nosocomial infections [1]. Acinetobacter spp. can colonize patients or the equipment used in medical care and survive on environmental surfaces for prolonged times [3]. Most clinical isolates are reported to be strains of Acinetobacter baumannii [4]. Clinical infections caused by non-baumannii Acinetobacter spp. have increased [5]. Carbapenem-resistant Acinetobacter (CRA) has become worldwide public-health issue with a widespread distribution, broad range of activities against β-lactams, increased patient morbidity, mortality, and lengths of hospital stay [6], among elderly patients, infants and patients with severe underlying disease. There is growing concern about the increasing prevalence of CRA [7], and it is difficult for clinicians to choose the initially appropriate antibiotic therapy [8]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call