Abstract

We have mapped the mRNA transcripts of banana bunchy top virus (BBTV) DNA-1. Northern hybridization and 3' RACE analysis identified two poly-adenylated RNAs associated with BBTV DNA-1. Previously, one major ORF in the virion sense of DNA-1 had been identified, which encoded a putative replication protein (Rep). An mRNA was identified in BBTV infected bananas that was clearly transcribed from this Rep ORF. Further, a second transcript was identified which mapped to an ORF completely within the Rep ORF. This encoded a putative 5 kDa protein of unknown function. Both these transcripts were also identified in a tobacco plant that had been transformed with Agrobacterium tumefaciens harbouring a binary construct containing the Rep ORF from BBTV DNA-1. This Rep ORF was inserted 3' of a cauliflower mosaic virus 35S promoter and 5' of a vegetable storage protein terminator. The transcripts mapped from these tobacco plants were identical at the 3' end to the transcripts from BBTV infected banana plants. The site of polyadenylation for the Rep ORF was at base 963 immediately 3' of the translational stop codon confirming that the polyadenylation signals for this transcript were all within the ORF. However, the internal ORF had a large untranslated region of 272 bases with its site of polyadenylation at nucleotide 803 and a polyadenylation signal 3' of the translational stop codon. A possible upstream termination signal (A/TTGTAA) was identified and was conserved within BBTV DNA-1 sequences from different international isolates.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.