Abstract

We show two more approaches for generating trajectory-based dynamics in the phase space formulation of quantum mechanics: "equilibrium continuity dynamics" (ECD) in the spirit of the phase space continuity equation in classical mechanics, and "equilibrium Hamiltonian dynamics" (EHD) in the spirit of the Hamilton equations of motion in classical mechanics. Both ECD and EHD can recover exact thermal correlation functions (of even nonlinear operators, i.e., nonlinear functions of position or momentum operators) in the classical, high temperature, and harmonic limits. Both ECD and EHD conserve the quasi-probability within the infinitesimal volume dx(t)dp(t) around the phase point (x(t), p(t)) along the trajectory. Numerical tests of both approaches in the Wigner phase space have been made for two strongly anharmonic model problems and a double well system, for each potential auto-correlation functions of both linear and nonlinear operators have been calculated. The results suggest EHD and ECD are two additional potential useful approaches for describing quantum effects for complex systems in condense phase.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.