Abstract

Many elastomeric proteins, which play important roles in a wide range of biological processes, exist as parallel/antiparallelly arranged dimers or multimers to perform their mechanobiological functions. For example, in striated muscle sarcomeres, the giant muscle protein titin exists as hexameric bundles to mediate the passive elasticity of muscles. However, it has not been possible to directly probe the mechanical properties of such parallelly arranged elastomeric proteins. And it remains unknown if the knowledge obtained from single-molecule force spectroscopy studies can be directly extrapolated to such parallelly/antiparallelly arranged systems. Here, we report the development of atomic force microscopy (AFM)-based two-molecule force spectroscopy to directly probe the mechanical properties of two elastomeric proteins that are arranged in parallel. We developed a twin-molecule approach to allow two parallelly arranged elastomeric proteins to be picked up and stretched simultaneously in an AFM experiment. Our results clearly revealed the mechanical features of such parallelly arranged elastomeric proteins during force-extension measurements and allowed for the determination of mechanical unfolding forces of proteins in such an experimental setting. Our study provides a general and robust experimental strategy to closely mimic the physiological condition of such parallel elastomeric protein multimers.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.