Abstract
In recent years, there has been an increased interest in the generation of superposition of coherent states with opposite phases, the so-called photonic Schrodinger-cat states. These experiments are very challenging and so far, cats involving small photon numbers only have been implemented. Here, we propose to consider two-mode squeezed states as examples of a Schrodinger-cat-like state. In particular, we are interested in several criteria aiming to identify quantum states that are macroscopic superpositions in a more general sense. We show how these criteria can be extended to continuous variable entangled states. We apply them to various squeezed states, argue that two-mode squeezed vacuum states belong to a class of general Schrodinger-cat states and compare the size of states obtained in several experiments. Our results not only promote two-mode squeezed states for exploring quantum effects at the macroscopic level but also provide direct measures to evaluate their usefulness for quantum metrology.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.