Abstract

Pulse-modulated converter systems play an important role in modern power electronics. Systems of this type also deserve considerable theoretical interest because of the complex interplay they exhibit between ordinary (smooth) bifurcations and so-called border-collision bifurcations generated by the switching dynamics. Particularly interesting are the unusual transitions to torus dynamics, i.e., to a mode of behavior in which the regular switching dynamics is modulated by another oscillatory mode that may arise through instability in the feedback control. Using the model of a two-level DC/DC converter as an example the paper provides a survey of three new mechanisms of torus bifurcation that can be observed in pulse-modulated control systems. The paper concludes with a discussion of the influence that operation in the torus regimes will have on the efficiency of the converter.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.