Abstract

An increasing demand for energy-efficient buildings has led to an increasing focus on predicted energy performance once a building is in use. Many studies have identified a performance gap between predicted energy use and actual measured energy use once buildings are in the user phase. However, none of the identified studies normalise measured energy use for both internal and external deviating boundary conditions. This study uses a Net-zero energy building (Net ZEB) building in Sweden to test two different approaches to the normalisation of measured energy use—static and dynamic methods. The normalisation of energy use for a ground source heat pump reduces the performance gap from 12% to 1–5%, depending on the method of normalisation. The normalisation of energy from photovoltaic (PV) panels reduces the performance gap from 17% to 5%, regardless of the method used. The results show that normalisation is important in order to accurately determine the energy performance of buildings. The most important parameters are the indoor temperature and internal loads, which have the largest effect on normalisation in this case study. Furthermore, the case study shows that it is possible to build Net ZEB buildings with existing technologies in a Northern European climate.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call