Abstract

The three-dimensional structures of bovine lens leucine aminopeptidase (blLAP) complexed with L-leucinal and of the unliganded enzyme have been determined at crystallographic resolutions of 1.9 and 1.6 A, respectively. Leucinal binds as a hydrated gem-diol to the active site of b1LAP), resembling the presumed gem-diolated intermediate in the catalytic pathway. One hydroxyl group bridges the two active site metal ions, and the other OH group is coordinated to Zn1. The high-resolution structure of the unliganded enzyme reveals one metal-bound water ligand, which is bridging both zinc ions. Together, these structures support a mechanism in which the bridging water ligand is the attacking hydroxide ion nucleophile. The gem-diolate intermediate is probably stabilized by four coordinating bonds to the dizinc center and by interaction with Lys-262 and Arg-336. In the mechanism, Lys-262 polarizes the peptide carbonyl group, which is also coordinated to Zn1. The Arg-336 side chain interacts with the substrate and the gem-diolate intermediate via water molecules. Near Arg-336 in the b1LAP-leucinal structure, an unusually short hydrogen bond is found between two active site water molecules.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.