Abstract

The redundancy allocation problem is one of the main branches of reliability optimization problems. Traditionally, the redundancy allocation model has focused mainly on maximizing system reliability at a predetermined time. Hence, in this study, we develop a more realistic model, such that the mean time to failure of a system is maximized. To overcome the structural complexity of the model, the Monte Carlo simulation method is applied. Two metaheuristics, Simulated Annealing (SA) and Genetic Algorithm (GA), are proposed to solve the problem. In addition, the design of experiments and response surface methodology are employed for tuning the GA and SA parameters. The metaheuristics are compared, based on their computation time and accuracy, in 30 test problems. Finally, the results are analyzed and discussed, and some conclusions are drawn.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.