Abstract

ABSTRACT: The toxic potency of three industrially used hydroxylamines was studied in human blood cellsin vitro. The parent compound hydroxylamine and the O-ethyl derivative gave very similar results. Both compounds induced a high degree of methemoglobin formation and glutathione depletion. Cytotoxicity was visible as Heinz body formation and hemolysis. High levels of lipid peroxidation occurred, in this respect O-ethyl hydroxylamine was more active than hydroxylamine. In contrast H2O2induced lipid peroxidation was lowered after O-ethyl hydroxylamine or hydroxylamine treatment, this is explained by the ferrohemoglobin dependence of H2O2induced radical species formation. Glutathione S-transferase (GST) and NADPH methemoglobin reductase (NADPH-HbR) activities were also impaired, probably as a result of the radical stress occurring. The riboflavin availability was decreased. Other enzyme activities glutathione reductase (GR), glucose 6-phosphate dehydrogenase (G6PDH), glucose phosphate isomerase and NADH methemoglobin reductase, were not or only slightly impaired by hydroxylamine or O-ethyl hydroxylamine treatment. A different scheme of reactivity was found for N,O-dimethyl hydroxylamine. This compound gave much less methemoglobin formation and no hemolysis or Heinz body formation at concentrations up to and including 7 mM. Lipid peroxidase induction was not detectable, but could be induced by subsequent H2O2treatment. GST and NADPH-HbR activities and riboflavin availability were not decreased. On the other hand GR and G6PDH activities were inhibited. These results combined with literature data indicate the existence of two different routes of hematotoxicity induced by hydroxylamines. Hydroxylamine as well as O-alkylated derivatives primarily induce methemoglobin, a process involving radical formation. The radical stress occurring is probably responsible for most other effects. N-alkylated species like N,O-dimethyl hydroxylamine primarily lead to inhibition of the protective enzymes G6PDH and GR. Since these enzymes play a key role in the protection of erythrocytes against oxidative stress a risk of potentiation during mixed exposure does exist.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call