Abstract

Data association is one of the key problems in the SLAM community. Several data association failures may cause the SLAM results to be divergent. Data association performance in SLAM is affected by both data association methods and sensor information. Two measures of handling sensor information are introduced herein to enhance data association performance in SLAM. For the first measure, truncating strategy of limited features, instead of all matched features, is used for observation update. These features are selected according to an information variable. This truncating strategy is used to lower the effect of false matched features. For the other measure, a special rejecting mechanism is designed to reject suspected observations. When the predicted robot pose is obviously different from the updated robot pose, all observed sensor information at this moment is discarded. The rejecting mechanism aims at eliminating accidental sensor information. Experimental results indicate that the introduced measures perform well in improving the stability of data association in SLAM. These measures are of extraordinary value for real SLAM applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.