Abstract

The problem of contingency return from the low lunar orbit is studied. A novel two-maneuver indirect return strategy is proposed. By effectively using the Earth’s gravity to change the orbital plane of the transfer orbit, the second maneuver in the well-known three-maneuver return strategy can be removed, so the total delta-v is reduced. Compared with the single-maneuver direct return, our strategy has the advantage in that the re-entry epoch for the minimum delta-v cost can be advanced in time, with a minimum delta-v value similar to that of the direct return. The most obvious difference between our strategy and the traditional single- or multiple- maneuver strategies is that the complete transfer orbit is a patch between a two-body conic orbit and a three-body orbit instead of two conic orbits. Our strategy can serve as a useful option for contingency return from a low lunar orbit, especially when the delta-v constraint is stringent for a direct return and the contingency epoch is far away from the return window.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call