Abstract

We compute the two-loop master integrals required for the leading QCD corrections to the interaction vertex of a massive neutral boson X0, e.g. H, Z or γ∗, with a pair of W bosons, mediated by a SU(2)L quark doublet composed of one massive and one massless flavor. All the external legs are allowed to have arbitrary invariant masses. The Magnus exponential is employed to identify a set of master integrals that, around d = 4 space-time dimensions, obey a canonical system of differential equations. The canonical master integrals are given as a Taylor series in ϵ = (4 − d)/2, up to order four, with coefficients written as combination of Goncharov polylogarithms, respectively up to weight four. In the context of the Standard Model, our results are relevant for the mixed EW-QCD corrections to the Higgs decay to a W pair, as well as to the production channels obtained by crossing, and to the triple gauge boson vertices ZWW and γ∗WW.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.