Abstract

In view of the forthcoming High-Luminosity phase of the LHC, next-to-next-to-next-to-leading (N3LO) calculations for the most phenomenologically relevant processes become necessary. In this work, we take the first step towards this goal for H+jet production by computing the one- and two-loop helicity amplitudes for the two contributing processes, H → ggg, Hto qoverline{q}g , in an effective theory with infinite top quark mass, to higher orders in the dimensional regulator. We decompose the amplitude in scalar form factors related to the helicity amplitudes and in a new basis of tensorial structures. The form factors receive contributions from Feynman integrals which were reduced to a novel canonical basis of master integrals. We derive and solve a set of differential equations for these integrals in terms of Multiple Polylogarithms (MPLs) of two variables up to transcendental weight six.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.