Abstract

Myxococcus xanthus utilizes two motility systems for surface locomotion: A-motility and S-motility. S-motility is mediated by extension and retraction of type IV pili. Cells exhibiting S-motility periodically reverse by switching the assembly of type IV pili from the old leading pole to the new leading pole. These cellular reversals involve regulated pole-to-pole oscillations of the FrzS protein. We constructed and characterized in-frame deletion mutations in several FrzS domains to determine their roles in protein localization. We found that FrzS has distinct domains required for residence at the leading cell pole, pole-to-pole transport and lagging cell pole. Our results are consistent with a model whereby S-motility reversals are mediated by a protein translocation system that delivers motility proteins such as FrzS from the leading cell pole to the lagging cell pole.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.