Abstract

In this paper, two linearized schemes for time fractional nonlinear wave equations (TFNWEs) with the space fourth-order derivative are proposed and analyzed. To reduce the smoothness requirement in time, the considered TFNWEs are equivalently transformed into their partial integro-differential forms by the Riemann–Liouville integral. Then, the first scheme is constructed by using piecewise rectangular formulas in time and the fourth-order approximation in space. And, this scheme can be fast evaluated by the sum-of-exponentials technique. The second scheme is developed by using the Crank–Nicolson technique combined with the second-order convolution quadrature formula. By the energy method, the convergence and unconditional stability of the proposed schemes are proved rigorously. Finally, numerical experiments are given to support our theoretical results.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call