Abstract

Superconducting quantum interference device (SQUID)-based time-division multiplexing (TDM) is a mature and widely implemented technology used to read out transition-edge sensor arrays. As the number of pixels in modern arrays continues to increase, a higher multiplexing factor is required to reduce the number of wires and amplifier channels. However, as the multiplexing factor is increased, the number of row-select wires (used to turn on a row of TDM SQUIDs in a two-dimensional configuration) also increases, limiting the reduction in array wires. We present a more advanced TDM architecture that implements multi-level switching between subgroups of pixels. We show that this technique can dramatically reduce the number of required row-select lines. We also present the design, fabrication, and testing of a TDM multiplexer incorporating a two-level switch, which implements a second switch for each group of ten TDM pixels. In this implementation, a multiplexing factor of 100 can be addressed using ten group-select wiring pairs and ten row-select wiring pairs. We demonstrate multiplexer functionality and present measured operating margins of this new TDM multiplexer.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call