Abstract
A method modifying a vacuum-assisted UV micro-molding (VAUM) process is proposed for the fabrication of polymer two-level submicron high porosity membranes (2LHPM). The modified process allows for the fabrication of robust, large-area membranes over 5 × 5 cm2 with a hierarchical architecture made from a 200 nm-thick layer having submicron level pores (as small as 500 nm) supported by a 20 μm-thick layer forming a microporous structure with 10-15 μm diameter pores. The fabricated freestanding membranes are flexible and mechanically robust enough for post manipulation and filtration of cell samples. Very high white blood cell (WBC) capture efficiencies (≈97%) from healthy blood samples after red blood cell (RBC) lysis are demonstrated using a 3D-printed filter cartridge incorporated within these 2LHPM. A high release efficiency of ≈95% is also proved using the same setup. Finally, on-filter multistep immunostaining of captured cells is also shown.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.