Abstract
This paper presents a novel approach to interpreting logical formulas for synthesizing algorithms and programs. The proposed method combines features of Kleene realizability and Gödel's “dialectica” interpretation but does not rely on them directly. A simple version of positive predicate logic without functions is considered, including conjunction, disjunction, implication, and universal and existential quantifiers. A new realizability semantics for formulas and sequents is described, which considers not just a realization of a formula, but a realization with additional support. The realization roughly corresponds to Kleene realizability. The support provides additional data in favor of the correctness of the realization. The support must confirm that the realization works correctly for the formula under any valid conditions of application. A proof language is presented for which a correctness theorem is proved showing that any derivable sequent has a realization and support confirming that this realization works correctly for this formula under any valid conditions with a suitable interpreter for the programs used.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.