Abstract

The flexible, efficient, and reliable operation of grid-interactive efficient buildings (GEBs) is increasingly impacted by the growing penetration of distributed energy resources (DERs). Besides, the optimization and control of DERs, buildings, and distribution networks are further complicated by their interconnections. In this letter, we exploit load-side flexibility and clean energy resources to develop a novel two-level hybrid decentralized-centralized (HDC) algorithm to control DER-connected GEBs. The proposed HDC 1) achieves scalability w.r.t. a large number of grid-connected buildings and devices, 2) incorporates a two-level design where aggregators control buildings centrally and the system operator coordinates the distribution network in a decentralized fashion, and 3) improves the computing efficiency and enhances communicating compatibility with heterogeneous temporal scales. Simulations are conducted based on the prototype of an office building at the Oak Ridge National Laboratory to show the efficiency and efficacy of the proposed approach.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.