Abstract

Dimensionality reduction strategies can be broadly categorized as band selection and feature extraction. Researchers and analysts from the remote sensing community give greater preference to band selection over feature extraction as the latter modifies the original reflectance values of hyperspectral data, making it difficult to understand the behavior of the materials in terms of their reflectance values. However, feature extraction strategies have their own advantages which cannot be ignored. Thus, a two-level, PCA-based band selection framework is proposed to unify the two dimensionality reduction strategies so that benefits of both the strategies can be derived. The proposed approach selects bands based on their relationship with a given set of principal components explained in terms of component loadings, thus keeping the original bands intact. Additionally, contrary to the popular notion that the complete information of all bands is adequately coalesced in the top principal components, middle principal components play a far stronger discriminative role when the competing classes are spectrally confusing to each other. Thus, for each level of classification, a different range of principal components is used to select the bands, on the basis of the level of spectral similarity expected between the classes at each level. Experimental results indicate that the proposed two-level band selection algorithm can select bands with varying levels of discriminative capabilities to effectively classify hyperspectral images consisting of classes spectrally very similar in nature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.