Abstract

Tensioned-web-over-slot die (TWOSD) coating deploys elastohydrodynamic interaction to control the distance between the moving substrate and the coating die lip surface in order to be able to coat an ultra-thin liquid layer. Dual slot TWOSD coating is designed to deposit two thin uniform liquid layers onto a moving web simultaneously. Like in the fixed-gap dual slot coating, the interlayer separation point needs to be at the downstream corner of the mid lip in order to prevent coating defects. Different flow features, like weeping, bead breakup and feed slot vortices, limit the range of operating parameters that ensures uniform coating, and define the operating window of the process. In this study, we analyze dual slot TWOSD coating flow by solving the Navier–Stokes equation coupled with thin cylindrical shell equation using the finite element method. The boundaries in the parameter space that define the operating window or vortex-free window are automatically computed by a direct tracking method of flow features. The effect of operating conditions, such as liquid viscosity, web tension and web speed, on the critical layer thickness at which the coating becomes non-uniform is determined by this study.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call