Abstract

When pycnocline thickness of ocean density is relatively small, density stratification can be well represented as a two-layer system. In this article, a depth integrated model of the two-layer fluid with constant density is considered, and a variant of the edge-based non-hydrostatic numerical scheme is formulated. The resulting scheme is very efficient since it resolves the vertical fluid depth only in two layers. Despite using just two layers, the numerical dispersion is shown to agree with the analytical dispersion curves over a wide range of kd, where k is the wave number and d the water depth. The scheme was tested by simulating an interfacial solitary wave propagating over a flat bottom, as well as over a bottom step. On a laboratory scale, the formation of an interfacial wave is simulated, which also shows the interaction of wave with a triangular bathymetry. Then, a case study using the Lombok Strait topography is discussed, and the results show the development of an interfacial wave due to a strong current passing through a sill.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.