Abstract

In light of the growing urgency surrounding energy and environmental concerns, this paper presents a two-layer iterative energy dispatch strategy tailored for a multi-energy-flow virtual power plant (VPP) operating within the distribution power grid. The proposed strategy unfolds in two key phases. First, it establishes an energy dispatch framework designed specifically for the multi-energy-flow VPP within the distribution power grid. Subsequently, it introduces an improved ant colony algorithm aimed at optimizing the output power of each VPP. In addition, the paper presents an optimization method for substation energy dispatch. This method uses a delay-aware consensus algorithm with the substation dispatch cost increment rate as the consensus variable, taking into account the communication delay between VPPs. Integrating a proportional–derivative (PD) control mechanism enhances the convergence speed of the delay-aware consensus algorithm and enables real-time energy dispatch of the multi-energy-flow VPP. The paper presents its conclusions by validating the efficacy of the proposed approach through simulation, thereby addressing the challenges and adapting to the shifting energy and environmental landscape.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.