Abstract

Coalitional control partitions a system into multiple clusters or coalitions that solve independent local subproblems in parallel. This paper presents a two-layer coalitional model predictive control approach for regulation in constrained-coupled subsystems. We formulate a resource allocation mechanism to distribute the coupled constraint so that the global control problem can be solved in a decentralized manner, guaranteeing the satisfaction of the common constraint. In particular, a top layer will calculate the system's partition according to a given criterion and supervise the shared resource allocation. In turn, the lower control layer will calculate the local optimization problems for every coalition in a decentralized fashion, according to the available shared resource determined by the upper layer. This strategy is applied to regulate the outlet temperature of parabolic-trough solar collector fields, which are composed of a set of loops that remain coupled through a global shared resource constraint.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call