Abstract

The basic model employed to describe nonlinear upper hybrid wave structures is the generalized nonlinear Schrödinger equation including second and fourth order dispersive effects as well as local and nonlocal nonlinearity. For two kinds of such an equation the existence of two stable solitons with the same plasmon number but with different spatial scales and amplitudes is shown as two qualitatively different kinds of upper hybrid soliton bistability. An integral relation for an arbitrary nonlinear upper hybrid wave packet evolution is derived taking into account higher order dispersive effects. Necessary conditions for soliton formation from arbitrary wave packets and the impossibility of wave packet collapse are demonstrated taking into account higher order dispersive effects.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call