Abstract

Two functionally different MAP kinase phosphatases (MKPs) were investigated to clarify their roles in behavioral sensitization to methamphetamine (METH). MKP-1 mRNA levels increased substantially by about 60-300% in a range of brain regions, including several cortices, the striatum and thalamus 0.5-1 h after acute METH administration. After chronic METH administration its increase was less pronounced, but a more than 50% increase was still seen in the frontal cortex. MKP-1 protein levels also increased 3 h after acute or chronic METH administration. MKP-3 mRNA levels increased by about 30-50% in several cortices, the striatum and hippocampus 1 h after acute METH administration, but only in the hippocampus CA1 after chronic METH administration. Pre-treatment with the D(1) dopamine receptor antagonist, SCH23390, attenuated the METH-induced increase of MKP-1 and MKP-3 mRNA in every brain region, while pre-treatment with the NMDA receptor antagonist, MK-801, attenuated it in some regions. These findings suggest that in METH-induced sensitization, MKP-1 and MKP-3 play important roles in the neural plastic modification in widespread brain regions in the earlier induction process, but in the later maintenance process, they do so only in restricted brain regions such as MKP-1 in the frontal cortices and MKP-3 in the hippocampus.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.