Abstract

Thin films have attracted much interest because they often have novel properties different from those of their bulk counterparts. In this work, we tune two metastable states in three kinds of lanthanum cobalt oxide thin films by electron beam irradiation and record their dynamic transition process in situ in a transmission electron microscope. The lanthanum cobalt oxide thin films exhibit a homogeneous microstructure in the initial state and then transfer to a stripelike superstructure with 3a0 periodicity (a0 is the perovskite lattice parameter), further developing into a superstructure with 2a0 periodicity in dark stripes (brownmillerite structure). To explore the inherent energy discrepancy within the two metastable states, we perform first-principles calculations on a LaCoO3-δ (0 ≤ δ ≤ 0.5) thin film system by geometry optimization. The calculation results suggest that the forming energy of the 3a0 periodicity stripelike structure is a little lower than that of the 2a0 periodicity in the LaCoO3-δ thin film. Our work explains why the two stripelike structures coexist in lanthanum cobalt oxide thin films and extends prospective applications related to oxygen vacancies in thin films.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call