Abstract

The new compounds Mn4(TeO3)(SiO4)X2 (X=Br, Cl) were synthesized by solid state reactions in sealed evacuated silica tubes. The compounds crystallize in the monoclinic space group P21/m with the unit cell parameters a=5.5463(3)Å (5.49434(7)Å), b=6.4893(4)Å (6.44184(9)Å), c=12.8709(7)Å (12.60451(18)Å), β=93.559(5)° (94.1590(12)°) and Z=2 for the respective Br and Cl analogues. Manganese adopts various distorted coordination polyhedra; [MnO6] octahedra, [MnO5] tetragonal pyramids and [MnO2X2] tetrahedra. Other building blocks are [SiO4] tetrahedra and [TeO3] trigonal pyramids. The structure is made up from layers having no net charge that are connected via weak Van der Waal interactions. The layers that are parallel to (110) consist of two manganese oxide sheets which are separated by [SiO4] tetrahedra. On the outer sides of the sheets are the [MnO2X2] tetrahedra and the [TeO3] trigonal pyramids connected so that the halide ions and the stereochemically active lone pairs on the tellurium atoms protrude from the layers. Magnetic susceptibility measurements reveal a Curie law with a Weiss temperature of θ=−153(3)K for temperatures ≥100K and indicate antiferromagnetic ordering at TN ~4K. Possible structural origins of the large frustration parameter of f=38 are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.