Abstract

We study equilibrium fluctuations of adherent membranes by means of Langevin simulations in the case when the interaction of the membrane with the substrate is twofold: a non-specific homogeneous harmonic potential is placed at large distances, whereas discrete ligand–receptor interactions occur at short distances from the flat substrate. We analyze the correlations between neighboring ligand–receptor bonds in a regime of relatively strong membrane fluctuations. By comparison with the random distribution of bonds, we find that the correlations between the bonds are always positive, suggesting spontaneous formation of domains. The equilibrium roughness of the membrane is then determined by fluctuations in the number density of bonds within the domains. Furthermore, we show that the excess number of bonds arising due to correlations and the instantaneous roughness of the membrane both follow master curves that depend only on the instantaneous bond density and not on the intrinsic binding strength of the ligand–receptor pair. The master curves show identical trends, further corroborating the link between membrane roughness and bond correlations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.