Abstract

We propose two simple well-balanced methods for hyperbolic systems with geometrical source terms having concentrations. Physical problems under consideration include the shallow water equations with topography and the quasi-one-dimensional isothermal nozzle flows. These two methods use the numerical fluxes already obtained from the corresponding homogeneous systems in the source terms, and one needs only a black-box (approximate) Riemann solver for the homogeneous system. Compared with our previous method developed in [S. Jin and X. Wen, J. Comput. Math., 22 (2004), pp. 230--249], these methods avoid the Newton iterations in the evaluation of the source term. Numerical experiments demonstrate that both methods give good numerical approximations to the subcritical and supercritical flows. With a transonic fix, both methods also capture with a high resolution the transonic flows over the concentration. These methods are applicable to both unsteady and steady state computations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.